The Functional Effect of Transcranial Magnetic Stimulation: Signal Suppression or Neural Noise Generation?

نویسندگان

  • Justin A. Harris
  • Colin W. G. Clifford
  • Carlo Miniussi
چکیده

Transcranial magnetic stimulation (TMS) is a popular tool for mapping perceptual and cognitive processes in the human brain. It uses a magnetic field to stimulate the brain, modifying ongoing activity in neural tissue under the stimulating coil, producing an effect that has been likened to a "virtual lesion." However, research into the functional basis of this effect, essential for the interpretation of findings, lags behind its application. Acutely, TMS may disable neuronal function, thereby interrupting ongoing neural processes. Alternatively, the effects of TMS have been attributed to an injection of "neural noise," consistent with its immediate and effectively random depolarization of neurons. Here we apply an added-noise paradigm to test these alternatives. We delivered TMS to the visual cortex and measured its effect on a simple visual discrimination task, while concurrently manipulating the level of image noise in the visual stimulus itself. TMS increased thresholds overall; and increasing the amount of image noise systematically increased discrimination thresholds. However, these two effects were not independent. Rather, TMS interacted multiplicatively with the image noise, consistent with a reduction in the strength of the visual signal. Indeed, in this paradigm, there was no evidence that TMS independently added noise to the visual process. Thus, our findings indicate that the "virtual lesion" produced by TMS can take the form of a loss of signal strength which may reflect a momentary interruption to ongoing neural processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Physiological noise on Thoraco-Lumbar spinal cord fMRI in 3T Magnetic field

Introduction: Functional MRI methods have been used to study sensorimotor processing in the brain and the Spinal cord. However, these techniques confront unwanted contributions to the measured signal from physiological fluctuations. For the spinal cord imaging, most of the challenges are consequences of cardiac and respiratory movement artifacts that are considered as signifi...

متن کامل

The neural mechanisms of the effects of transcranial magnetic stimulation on perception.

Transcranial magnetic stimulation (TMS) is a technique used to study perceptual, motor, and cognitive functions in the human brain. Its effects have been likened to a "virtual brain lesion," but a direct test of this assumption is lacking. To verify this hypothesis, we measured psychophysically the interaction between the neural activity induced by a visual motion-direction discrimination task ...

متن کامل

Visual awareness suppression by pre-stimulus brain stimulation; a neural effect

Transcranial magnetic stimulation (TMS) has established the functional relevance of early visual cortex (EVC) for visual awareness with great temporal specificity non-invasively in conscious human volunteers. Many studies have found a suppressive effect when TMS was applied over EVC 80-100 ms after the onset of the visual stimulus (post-stimulus TMS time window). Yet, few studies found task per...

متن کامل

Non Invasive Brain Stimulation by Transcranial Magnetic Stimulation (TMS): Principles and Applications

Magnetic brain stimulation used as a method of psychological interventions in the treatment of diseases. This method functions used in the treatment of clinical disorder such as speech and movement disorders caused by stroke, tinnitus, Parkinson's disease, nervous tics. Applications in the field of psychological therapy, it is possible to stimulate specific brain area involved in certain mental...

متن کامل

Effect of different frequencies of repetitive transcranial magnetic stimulation (rTMS) on acquisition of chemical kindling seizures in rats

IIntroduction: Repetitive transcranial magnetic stimulation (rTMS) modulates the excitability of cortical neural networks. The effect of rTMS on excitability of cortical networks depends on its frequency. According to the previous reports, a distinction is made between low (<1Hz) and high frequencies of rTMS. Low frequencies of rTMS inhibit seizure but high frequencies increase it. In the curre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cognitive neuroscience

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2008